Wuho Is a New Member in Maintaining Genome Stability through its Interaction with Flap Endonuclease 1.
نویسندگان
چکیده
Replication forks are vulnerable to wayward nuclease activities. We report here our discovery of a new member in guarding genome stability at replication forks. We previously isolated a Drosophila mutation, wuho (wh, no progeny), characterized by a severe fertility defect and affecting expression of a protein (WH) in a family of conserved proteins with multiple WD40 repeats. Knockdown of WH by siRNA in Drosophila, mouse, and human cultured cells results in DNA damage with strand breaks and apoptosis through ATM/Chk2/p53 signaling pathway. Mice with mWh knockout are early embryonic lethal and display DNA damage. We identify that the flap endonuclease 1 (FEN1) is one of the interacting proteins. Fluorescence microscopy showed the localization of WH at the site of nascent DNA synthesis along with other replication proteins, including FEN1 and PCNA. We show that WH is able to modulate FEN1's endonucleolytic activities depending on the substrate DNA structure. The stimulatory or inhibitory effects of WH on FEN1's flap versus gap endonuclease activities are consistent with the proposed WH's functions in protecting the integrity of replication fork. These results suggest that wh is a new member of the guardians of genome stability because it regulates FEN1's potential DNA cleavage threat near the site of replication.
منابع مشابه
Requirement for flap endonuclease 1 (FEN1) to maintain genomic stability and transcriptional gene silencing in Arabidopsis.
As a central component in the maturation of Okazaki fragments, flap endonuclease 1 (FEN1) removes the 5'-flap and maintains genomic stability. Here, FEN1 was cloned as a suppressor of transcriptional gene silencing (TGS) from a forward genetic screen. FEN1 is abundant in the root and shoot apical meristems and FEN1-GFP shows a nucleolus-localized signal in tobacco cells. The Arabidopsis fen1-1 ...
متن کاملThe human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus.
The hSuv3 (human Suv3) helicase has been shown to be a major player in mitochondrial RNA surveillance and decay, but its physiological role might go beyond this functional niche. hSuv3 has been found to interact with BLM (Bloom's syndrome protein) and WRN (Werner's syndrome protein), members of the RecQ helicase family involved in multiple DNA metabolic processes, and in protection and stabiliz...
متن کاملTrinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegenerative diseases and prostate cancer. Recent studies have pointed to a linkage between oxidative DNA damage, base excision repair (BER) and TNR expansion, which is demonstrated by the observation that DNA polymerase β (pol β) gap-filling synthesis acts in concert with alternate flap cleavage by flap endonucl...
متن کاملStructural basis for recruitment of human flap endonuclease 1 to PCNA.
Flap endonuclease-1 (FEN1) is a key enzyme for maintaining genomic stability and replication. Proliferating cell nuclear antigen (PCNA) binds FEN1 and stimulates its endonuclease activity. The structural basis of the FEN1-PCNA interaction was revealed by the crystal structure of the complex between human FEN1 and PCNA. The main interface involves the C-terminal tail of FEN1, which forms two bet...
متن کاملHuman RECQL 5 b stimulates flap endonuclease 1
Human RECQL5 is a member of the RecQ helicase family which is implicated in genome maintenance. Five human members of the family have been identified; three of them, BLM, WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS biology
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2016